Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Rong Wen, Ming Li,* Jian-Xia

 Zhou and Peng LiuCollege of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's
Republic of China
Correspondence e-mail: liming928@263.net

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.037$
$w R$ factor $=0.095$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-Benzoyl-3-(4-cyano-5-methylsulfanyl-1H-pyrazol-3-yl)thiourea

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS}_{2}$, the dihedral angle between the planes of the phenyl and pyrazole rings is $25.62(2)^{\circ}$. The crystal packing is stablized by intra- and intermolecular hydrogen bonds which link the molecules into a three-dimensional network.

Comment

Pyrazole and its derivatives represent one of the most active classes of compounds; they possess a wide spectrum of biological activities, such as antibacterial, fungicidal, herbicidal and insecticidal activities (Li et al., 1997; Zhao et al., 2001). In the course of our systematic studies aimed at the synthesis of new bioactive compounds, we synthesized the title compound, (I), the structure of which is reported here.

(I)

In (I), the central $\mathrm{S} 2 / \mathrm{O} 1 / \mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 6 / \mathrm{C} 7$ system is roughly planar (plane $p 1$), with a maximum deviation from the plane of 0.114 (2) \AA for N 4 , and forms dihedral angles of 24.82 (5) and $50.54(6)^{\circ}$ with the planes of the pyrazole $(p 2)$ and phenyl ($p 3$) rings, respectively. The dihedral angle between $p 2$ and $p 3$ is $25.62(2)^{\circ}$. Bond distances and angles (Table 1) are as expected for this type of compound. The most interesting feature of (I) is the combination of intra- and intermolecular hydrogen-bond interactions (Table 2), forming an extended three-dimensional network in the crystal structure (Fig. 2).

Figure 1
View of the title compound, shown with 35% probability displacement ellipsoids. Only the major component of the disordered methyl group is shown.

Figure 2
The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Only the major component of the disordered methyl group is shown.

Experimental

A solution of 5-amino-4-cyano-3-methylsulfanyl-1 H -pyrazole $(0.4 \mathrm{~g}$, 2.6 mmol), obtained according to a previously reported procedure (Wen et al., 2005), and an equimolar amount of benzoyl isothiocyanate in acetone (40 ml) were stirred under microwave irradiation for $20 \mathrm{~min}(700 \mathrm{~W}, 313 \mathrm{~K})$. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from ethyl acetate as a light-yellow solid (m.p. 466 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{OS}_{2} \\
& M_{r}=317.39 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=7.6970(11) \AA \\
& b=15.892(2) \AA \\
& c=12.0775(17) \AA \\
& \beta=100.999(2))^{\circ} \\
& V=1450.2(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.882, T_{\text {max }}=0.914$
8039 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=1.02$
2938 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
D_{x}=1.454 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3337 reflections
$\theta=2.6-26.2^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, light yellow
$0.34 \times 0.28 \times 0.24 \mathrm{~mm}$

2938 independent reflections
2287 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-6 \rightarrow 9$
$k=-19 \rightarrow 19$
$l=-15 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0403 P)^{2}\right. \\
& +0.7311 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C5	$1.803(5)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.338(2)$
S2-C6	$1.6677(19)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.383(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.219(2)$	$\mathrm{N} 5-\mathrm{C} 4$	$1.143(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.333(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.390(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.353(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.405(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.325(2)$		
C1-N1-N2	$114.01(17)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$111.98(16)$
C3-N2-N1	$103.70(16)$	$\mathrm{N} 5-\mathrm{C} 4-\mathrm{C} 2$	$176.9(2)$
N1-C1-C2	$105.74(17)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 4$	$116.55(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$104.57(17)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 4$	$121.81(17)$
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 3$	$0.4(4)$	$\mathrm{C} 6-\mathrm{N} 4-\mathrm{C} 7-\mathrm{O} 1$	$2.5(3)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 6-\mathrm{S} 2$	$-1.5(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	$0.86(2)$	$2.00(2)$	$2.662(2)$	$133.9(18)$
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.86(2)$	$2.46(2)$	$3.149(2)$	$137.5(18)$
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{NS}^{\text {ii }}$	$0.83(2)$	$2.40(2)$	$3.111(3)$	$143.1(19)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 2^{\mathrm{iii}}$	$0.80(2)$	$2.54(2)$	$3.334(2)$	$170(2)$
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.93	2.60	$3.521(2)$	169

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $x-1, y, z$.

H atoms bonded to N atoms were located in a difference map and refined freely. All other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The methyl group was found to be disordered; C 5 and attached H atoms were refined over two positions with occupancies of 0.80 (3) and 0.20 (3).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (No. 20572057).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, Z. M., Chen, H. S., Zhao, W. G. \& Huang, X. S. (1997). Chem. J. Chin. Univ. 18, 1794-1799.
Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wen, L. R., Wang, S. W., Li, M. \& Yang, H. Z.(2005). Chin. J. Chem . 23, 12311235.

Zhao, W. G., Chen, H. S., Li, Z. M., Han, Y. F., Yan, H., Lai, J. Y. \& Wang, S. H. (2001). Chem. J. Chin. Univ. 22, 939-942.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

